Modular Sterile Cleanroom Final Testing Results and Product Demonstration

Logan Bennett
Michelle Borzick
Gia Neve
Aaron Reynoza

Design Requirement Summary

Customer Requirements:

- CR1: Modular can be assembled and disassembled in a business day with a small crew of people
- CR2: Transportable can be transported in sections
- CR3: Spacious can hold at least
 6 people
- CR4: Safe can support the weight of the FFUs
- CR5: ISO Class 7 Compliant –
 meets particle count, airflow, and
 ceiling coverage requirements.

Engineering Requirements:

ER1: Spacious – room area around 192 ft^2 (12' x 16')

ER2: Particle Count and Size - <

 0μ g particles, $< 0.5 \mu$ m particle size

ER3: Airflow - ≥ 90 ft/min, ≥ 60 air

changes/hour

ER4: Ceiling Coverage - ≥ 15%

ER5: Reynold's Number - $< 1 * 10^7$

ER6: Deflection - 0in

Top Level Testing Summary

Table 1: Test Summary

Experiment/Test	Relevant DRs	Testing Equipment Needed
Deflection	CR4 (Safe)	Tape measure
Particle Count	CR5 (ISO Class 7 Compliant) ER2 (Particle Count and Size)	Aerosol mass monitor, sterile gloves, hair net, cleanroom suit, ethanol solution
Airflow	CR5 (ISO Class 7 Compliant) ER3 (Airflow) ER5 (Reynold's Number)	Hot wire anemometer
Area	CR3 (Spacious) ER1 (Spacious) ER4 (Ceiling Coverage)	Tape measure
Modularity	CR1 (Modular) CR2 (Transportable)	Instruction manual, rubber mallet, 1/4" torque wrench, ladder, timer

Particle Count Testing Plan

Goal:

 All particle count measurements within the acceptable range.

Procedure:

- 1. Obtain calibrated aerosol mass monitor.
- 2. Put on hair net, cleanroom suit, and sterile gloves. Enter sterilized cleanroom.
- 3. Test particle count in each designated quadrant and corner. For all measurements, measure at 0, 2, 4, and 6ft above the ground.
- 4. Record all particle counts on specification sheet.

Figures 1-2: Aerosol Mass Monitoring

Particle Count Results

Table 2: Particle Count Testing Results

	1		
Location	Height	Aerosol	Average Aerosol
	(ft)	Mass (μg)	Mass (μg)
Corner 1	0	0.0	0.0
	2	0.0	
	4	0.0	
	6	0.0	
Corner 2	0	0.0	0.025
	2	0.0	
	4	0.0	
	6	0.1	
Corner 3	0	0.0	0.0
	2	0.0	
	4	0.0	
	6	0.0	
Corner 4	0	0.1	0.025
	2	0.0	
	4	0.0	
	6	0.0	
Center	0	0.0	0.0
Quadrant 1	2	0.0	
	4	0.0	
	6	0.0	
Center	0	0.0	0.025
Quadrant 2	2	0.0	
	4	0.1	
	6	0.0	

Location	Height	Aerosol	Average Aerosol		
	(ft)	Mass (μg)	Mass (μg)		
Center	0	0.0	0.025		
Quadrant 3	2	0.1			
	4	0.0			
	6	0.0			
Center	0	0.1	0.025		
Quadrant 4	2	0.0			
	4	0.0			
	6	0.0			
Center	0	0.0	0.025		
Quadrant 5	2	0.0			
	4	0.1			
	6	0.0			
Center	0	0.0	0.025		
Quadrant 6	2	0.1			
	4	0.0			
	6	0.0			
Center	0	0.0	0.0		
Quadrant 7	2	0.0			
	4	0.0			
	6	0.0			
Center	0	0.0	0.025		
Quadrant 8	2	0.1			
	4	0.0			
	6	0.0			
Cleanroom Total Average Aerosol Mass (µg) 0.01					

Modularity Testing Plan

Goal:

- Estimate assembly and disassembly time to determine if cleanroom is modular.
- Identify smaller transportable sections of design.
- Able to assemble or disassemble cleanroom in one business day.

Procedure:

- 1. Obtain assembly manual and all required materials.
- 2. Assemble all E beams with connectors to form the perimeter of the cleanroom. Record time taken to assemble.
- 3. Assemble all A beams to perimeter as shown.
- 4. Assemble the ceiling in the 5 quadrants as shown. Assemble in quadrant order.
- 5. Assemble all ceiling polycarbonate sheets using the required nuts and hex bolts outlined in the assembly.
- 6. Assemble all wall polycarbonate sheets using the required nuts and bolts outlined in the assembly.
- 7. Install vinyl sheets for doorway.
- 8. Install FFUs on ceiling. Plug in all electrical cords.

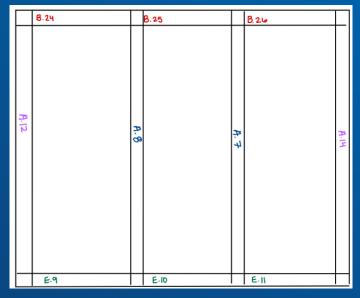


Figure 3: 12ft Wall

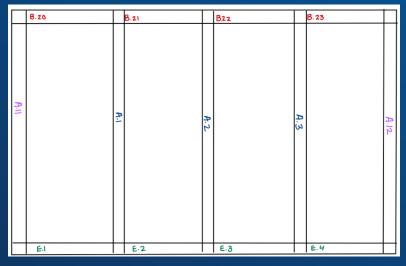


Figure 4: 16ft Wall

Modularity Results

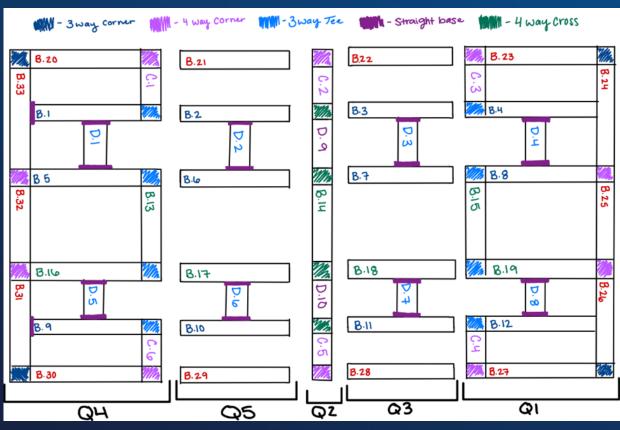


Figure 5: Ceiling Quadrants

Table 3: Modularity Testing Results

Assembly Part	# People Required	Assembly Time (Hrs)	Disassembly Time (Hrs)
Perimeter	1	0.5	1.0
18ft Wall 1	2	0.5	1.0
18ft Wall 2	2	0.5	1.0
12ft Wall 1	2	0.25	0.5
12ft Wall 2	2	0.25	0.5
Ceiling Quadrants	3	1.5	3.0
Polycarbonate Ceiling	3	1.0	1.0
Polycarbonate Walls	2	1.5	1.5
Vinyl Door	1	0.25	0.25
FFUs	4	1.0	1.0
Total Assembly Time:		7.25	10.75

Deflection Testing Plan

Goal:

 Determine best support beam configuration - smallest deflection, ceiling height 90in

Procedure:

- 1. Obtain a measuring tape and locate the 6 deflection points on the roof configuration.
- 2. For each of the support beam configurations, measure the distance from the top of the connector to the floor at each deflection point. Record the distances on the specifications sheet.
- 3. Calculate the average deflection for each support configuration.

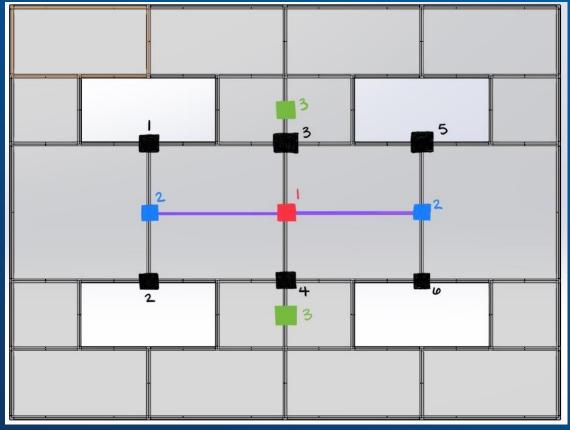


Figure 6: Deflection Points and Support Beam Configurations

 $Average \ deflection = \frac{\Sigma \ deflection \ measurements}{Number \ deflection \ measurements}$

Deflection Results

Results:

Support Beam
 Config 4: 2 off
 center supports
 with a centralized
 ceiling beam.

Figure 7: Deflection Measurement

Table 4: Deflection Testing Results

Deflection Point	No Support Beams	Support Beam Config 1	Support Beam Config 2	Support Beam Config 3	Support Beam Config 4
1	88.6"	89.4"	90.0"	88.8"	90.1"
2	88.6"	89.5"	90.0"	88.8"	90.1"
3	88.6"	90.0"	88.9"	90.0"	90.0"
4	88.6"	90.0"	88.9"	90.0"	90.0"
5	88.5"	89.5"	90.0"	88.8"	90.1"
6	88.9"	89.5"	90.0"	88.8"	90.1"
Average Beam Height	88.63"	89.65"	89.63"	89.2"	90.07"
Average Deflection	1.37"	0.35"	0.37"	0.8"	- 0.07"

Airflow Testing Plan:

Goal:

- Average velocities >90 ft/min.
- Air changes per hour > 60.
- Reynold's Number < 1 * 10⁷

Procedure:

- 1. Obtain calibrated hot wire anemometer.
- 2. Enter the cleanroom.
- 3. Measure the minimum and maximum velocities under the center of each FFU and at the center of each outlet.
- 4. Record the velocities for each FFU and outlet location as labeled.
- 5. Calculate the average velocity, air changes per hour, and Reynold's number at each location.

Figure 8: Anemometer

$$Average \ velocity = \frac{\Sigma \ velocity \ measurements}{Number \ velocity \ measurements}$$

$$Air \ changes = \frac{Average \ Velocity * Outlet \ Area * 60}{Clean room \ Volume}$$

$$Reynold's \ number = \frac{\rho VL}{\mu}$$

Airflow Results:

Table 5: Airflow Testing Results

Measurement Location	Minimum Velocity (ft/min)	Maximum Velocity (ft/min)	Average Velocity (ft/min)	Air Changes per Hour	Reynold's Number
FFU 1	63	69	66	54	$6.58*10^4$
FFU 2	53	56	54.5	44	$5.43 * 10^4$
FFU 3	68	74	71	58	$7.07 * 10^4$
FFU 4	71	77	74	61	$7.37 * 10^4$
Outlet 1	105	114	109.5	89	$1.09 * 10^5$
Outlet 2	93	111	102	83	$1.02 * 10^5$
Outlet 3	92	104	98	80	$9.76 * 10^4$
Outlet 4	113	118	115.5	94	$1.15 * 10^5$
Outlet 5	126	136	131	107	$1.31*10^{5}$
Outlet 6	105	118	111.5	91	$1.11 * 10^5$
Outlet 7	119	127	123	100	$1.23*10^{5}$
Outlet 8	119	124	121.5	99	$1.21*10^{5}$
Outlet 9	108	114	111	90	$1.11 * 10^5$
Outlet 10	113	118	115.5	94	$1.15 * 10^5$
Outlet 11	108	111	109.5	89	$1.09 * 10^5$
Outlet 12	94	98	96	78	$9.56 * 10^4$
Cleanroom Averages:		100.6	81.6	$1.00*10^{5}$	

Anemometer Specifications:

Accuracy: ± 5 ft/min Resolution: 1 ft/min

Results:

- Average Velocity > 90 ft/min
- Average air changes/hour > 60
- Average Reynold's Number is laminar

Area Testing Plan and Results:

Goal: Area of the cleanroom is around 12'x16' to accommodate at least 6 people. Ceiling coverage of cleanroom is > 15%.

Procedure:

- 1. Obtain measuring tape and calculator.
- 2. Measure the length of the cleanroom floor from one corner to the next corner on the long side of the cleanroom.
- 3. Measure the width of the cleanroom floor from one corner to the next corner on the short side of the cleanroom.
- 4. Calculate area of cleanroom.
- 5. Measure the width and length of each FFU surface. Calculate the area of each FFU surface and then the average area of the FFU surfaces.
- 6. Calculate the ceiling coverage of the cleanroom.

A = LxW			
Ceiling Coverage :	Area FFUs		
	Area Cleanroom		

Table 6: Area Testing Results

	Cleanroom	FFU	
Length (ft)	15.75	3.88	
Width (ft)	11.77	1.88	
Area (ft^2)	185.4	7.29	
Ceiling Coverage (%)	15.7%		

Results:

- Area of the cleanroom was sufficient to hold 6 people.
- Ceiling coverage is >15%.

Specification Sheet Preparation

Table 7: Customer Requirements Summary Table

Customer Requirement	CR Met? (√ or X)	Client Acceptable? (√ or X)
Modular	\checkmark	\checkmark
Transportable	\checkmark	\checkmark
Spacious	\checkmark	\checkmark
Safe	\checkmark	✓
ISO Class 7 Compliant	\checkmark	✓

Table 8: Engineering Requirements Summary Table

Engineering	Target	Tolerance	Measured/	ER Met?	Client Acceptable?
Requirement			Calculated Value	(√ or X)	(√ or X)
Spacious	$192 ft^2$	$\pm 10 ft^2$	$185.4 ft^2$	√	\checkmark
Particle Count	0 μg of particles size	N/A	0.01 μg	\checkmark	\checkmark
	> 0.5 μm				
Airflow	> 90ft/min,	N/A	100.6 ft/min,	√	\checkmark
	> 60 air changes		911 air changes		
Ceiling Coverage	> 15%	N/A	15.7%	√	✓
Reynold's Number	$< 1 * 10^7$	N/A	$1*10^{5}$	$\sqrt{}$	

QFD

Updates:

Removed ER for positive pressure

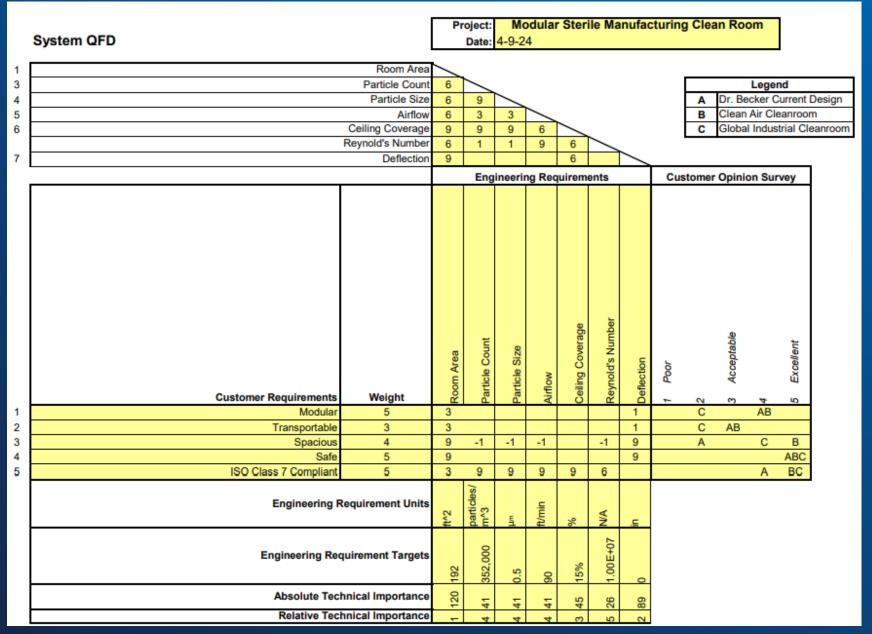


Figure 9: QFD

Product Demonstration

THANK YOU!

